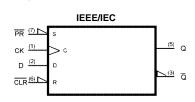
## NC7SZ74 TinyLogic® UHS D-Type Flip-Flop with Preset and Clear

#### **General Description**

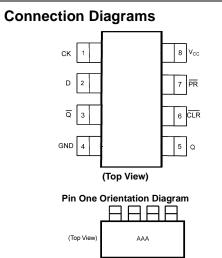
#### **Features**

- Space saving US8 surface mount package
- MicroPak<sup>™</sup> leadless package
- Ultra High Speed; t<sub>PD</sub> 2.6 ns Typ into 50 pF at 5V V<sub>CC</sub>
- High Output Drive; ± 24 mA at 3V V<sub>CC</sub>
- Broad V<sub>CC</sub> Operating Range; 1.65V to 5.5V
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented


#### **Ordering Code:**

| NC7SZ<br>TinyLc                                                                                      | 274                                                                                                                     |                                                                                                                                       | D-Type Flip-Flop with Preset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | evised June 2003                                                                          |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| set and clear<br>TinyLogic® in<br>is fabricated<br>ultra high spe<br>low static pov<br>ing range. T  | 4 is a single<br>from Fairc<br>the space<br>with advance<br>eed with hig<br>ver dissipati<br>he device                  | D-type CMO<br>hild's Ultra Hi<br>saving US8 p<br>ced CMOS ted<br>gh output driv<br>on over a very<br>is specified to<br>e. The inputs | <ul> <li>Features</li> <li>S Flip-Flop with pre-<br/>gh Speed Series of<br/>ackage. The device<br/>chnology to achieve<br/>e while maintaining<br/>y broad V<sub>CC</sub> operat-<br/>po perate over the<br/>and output are high</li> <li>Features</li> <li>Space saving US8 surface mod<br/>MicroPak™ leadless package</li> <li>Ultra High Speed; t<sub>PD</sub> 2.6 ns Ty</li> <li>High Output Drive; ± 24 mA at</li> <li>Broad V<sub>CC</sub> Operating Range; 1</li> <li>Power down high impedance in<br/>Overvoltage tolerant inputs fact</li> </ul> | /p into 50 pF at 5V V <sub>CC</sub><br>3V V <sub>CC</sub><br>.65V to 5.5V<br>nputs/output |
| impedance w<br>7V independe<br>ates voltages<br>The signal lev<br>Q output dur<br>pulse.             | ent of V <sub>CC</sub> o<br>above V <sub>CC</sub><br>vel applied t<br>ing the pos                                       | perating voltage<br>in the 3-STAT<br>to the D input<br>sitive going tra                                                               | ge. The output toler-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |
| impedance w<br>7V independe<br>ates voltages<br>The signal lev<br>Q output dur                       | ent of V <sub>CC</sub> o<br>above V <sub>CC</sub><br>vel applied t<br>ing the pos                                       | perating volta<br>in the 3-STAT<br>to the D input<br>itive going tra                                                                  | Patented noise/EMI reduction of E condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |
| impedance w<br>7V independe<br>ates voltages<br>The signal lev<br>Q output dur<br>pulse.<br>Ordering | ent of V <sub>CC</sub> o<br>above V <sub>CC</sub><br>vel applied f<br>ing the pos                                       | perating volta<br>in the 3-STAT<br>to the D input<br>sitive going tra<br>Product                                                      | Patented noise/EMI reduction of the CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | circuitry implemented                                                                     |
| impedance w<br>7V independe<br>ates voltages<br>The signal lev<br>Q output dur<br>pulse.<br>Ordering | ent of V <sub>CC</sub> o<br>above V <sub>CC</sub><br>vel applied f<br>ing the pos<br><b>g Code</b><br>Package           | perating voltae<br>in the 3-STAT<br>to the D input<br>sitive going tra-<br>Product<br>Code                                            | Patented noise/EMI reduction of E condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |
| impedance w<br>7V independe<br>ates voltages<br>The signal lev<br>Q output dur<br>pulse.<br>Ordering | ent of V <sub>CC</sub> o<br>above V <sub>CC</sub><br>vel applied f<br>ing the pos<br><b>g Code</b><br>Package<br>Number | perating volta<br>in the 3-STAT<br>to the D input<br>sitive going tra<br>Product                                                      | Patented noise/EMI reduction of the CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Supplied As                                                                               |

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.


NC7SZ74

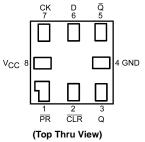
### Logic Symbol



#### **Pin Descriptions**

| Pin Names   | Description         |
|-------------|---------------------|
| D           | Data Input          |
| СК          | Clock Pulse Input   |
| CLR         | Direct Clear Input  |
| Q, <u>Q</u> | Flip-Flop Output    |
| PR          | Direct Preset Input |




#### **Truth Table**

|     | Inp | uts |              | Out            | puts           | Function  |  |  |
|-----|-----|-----|--------------|----------------|----------------|-----------|--|--|
| CLR | PR  | D   | СК           | Q              | q              | runction  |  |  |
| L   | Н   | Х   | Х            | L              | Н              | Clear     |  |  |
| Н   | L   | Х   | Х            | Н              | L              | Preset    |  |  |
| L   | L   | Х   | Х            | Н              | Н              | —         |  |  |
| Н   | Н   | L   | 1            | L              | Н              | —         |  |  |
| Н   | Н   | Н   | Ŷ            | Н              | L              | —         |  |  |
| Н   | Н   | Х   | $\downarrow$ | Q <sub>n</sub> | Q <sub>n</sub> | No Change |  |  |



AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).





 $\begin{array}{l} H = HIGH \ Logic \ Level \\ L = LOW \ Logic \ Level \\ Q_n = No \ change \ in \ data \end{array}$ 

Z = High Impedance

 $\begin{array}{l} X = \text{Immaterial} \\ \uparrow = \text{Rising Edge} \\ \downarrow = \text{Falling edge} \end{array}$ 

| Absolute | Maximum | Ratings(Note 1) |
|----------|---------|-----------------|
|----------|---------|-----------------|

## Recommended Operating

| Supply Voltage (V <sub>CC</sub> )                                    | -0.5V to +7.0V  |
|----------------------------------------------------------------------|-----------------|
| DC Input Voltage (V <sub>IN</sub> )                                  | -0.5V to +7.0V  |
| DC Output Voltage (V <sub>OUT</sub> )                                | -0.5V to +7.0V  |
| DC Input Diode Current (IIK)                                         |                 |
| V <sub>IN</sub> < 0V                                                 | –50 mA          |
| DC Output Diode Current (I <sub>OK</sub> )                           |                 |
| V <sub>OUT</sub> < 0V                                                | –50 mA          |
| DC Output (I <sub>OUT</sub> ) Source/Sink Current                    | $\pm$ 50 mA     |
| DC V <sub>CC</sub> /GND Current (I <sub>CC</sub> /I <sub>GND</sub> ) | $\pm$ 50 mA     |
| Storage Temperature Range (T <sub>STG</sub> )                        | –65°C to +150°C |
| Junction Temperature under Bias $(T_J)$                              | 150°C           |
| Junction Lead Temperature (TL)                                       |                 |
| (Soldering, 10 seconds)                                              | 260°C           |
| Power Dissipation (P <sub>D</sub> ) @ +85°C                          | 250 mW          |
| (Soldering, 10 seconds)                                              |                 |

| Conditions (Note 2)                                                                          |                                  |
|----------------------------------------------------------------------------------------------|----------------------------------|
| Power Supply                                                                                 |                                  |
| Operating (V <sub>CC</sub> )                                                                 | 1.65V to 5.5V                    |
| Data Retention                                                                               | 1.5V to 5.5V                     |
| Input Voltage (V <sub>IN</sub> )                                                             | 0V to 5.5V                       |
| Output Voltage (V <sub>OUT</sub> )                                                           |                                  |
| Active State                                                                                 | 0V to V <sub>CC</sub>            |
| 3-STATE                                                                                      | 0V to 5.5V                       |
| Input Rise and Fall Time $(t_r, t_f)$                                                        |                                  |
| $V_{CC}=1.8V,2.5V\pm0.2V$                                                                    | 0 to 20 ns/V                     |
| $V_{CC}=3.3V\pm0.3V$                                                                         | 0 to 10 ns/V                     |
| $V_{CC}=5.5V\pm0.5V$                                                                         | 0 to 5 ns/V                      |
| Operating Temperature (T <sub>A</sub> )                                                      | $-40^{\circ}C$ to $+85^{\circ}C$ |
| Thermal Resistance ( $\theta_{JA}$ )                                                         | 250° C/W                         |
| Note 1: Absolute Maximum Ratings: are those safety of the device cannot be guaranteed. The d |                                  |

NC7SZ74

Note 1: Absolute Maximum Ratings, are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

## **DC Electrical Characteristics**

| Symbol           | Parameter                 | $V_{CC}$ $T_A = +25^{\circ}C$ |                      | $T_A = -40^\circ C$ to $+85^\circ C$ |                      | Units                | Conditions           |       |                                       |                           |
|------------------|---------------------------|-------------------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|-------|---------------------------------------|---------------------------|
| Symbol           | r ai ailietei             | (V)                           | Min                  | Тур                                  | Max                  | Min                  | Max                  | Units | Conditions                            |                           |
| VIH              | HIGH Level Control        | 1.65 to 1.95                  | 0.75 V <sub>CC</sub> |                                      |                      | 0.75 V <sub>CC</sub> |                      | v     |                                       |                           |
|                  | Input Voltage             | 2.3 to 5.5                    | 0.75 V <sub>CC</sub> |                                      |                      | 0.7 V <sub>CC</sub>  |                      | v     |                                       |                           |
| V <sub>IL</sub>  | LOW Level Control         | 1.65 to 1.95                  |                      |                                      | 0.25 V <sub>CC</sub> |                      | 0.25 V <sub>CC</sub> | v     |                                       |                           |
|                  | Input Voltage             | 2.3 to 5.5                    |                      |                                      | 0.3 V <sub>CC</sub>  |                      | 0.3 V <sub>CC</sub>  | v     |                                       |                           |
| V <sub>OH</sub>  | HIGH Level Control        | 1.65                          | 1.55                 | 1.65                                 |                      | 1.55                 |                      |       |                                       |                           |
|                  | Output Voltage            | 2.3                           | 2.2                  | 2.3                                  |                      | 2.2                  |                      |       |                                       | 100                       |
|                  |                           | 3.0                           | 2.9                  | 3.0                                  |                      | 2.9                  |                      |       |                                       | I <sub>OH</sub> = -100 μ/ |
|                  |                           | 4.5                           | 4.4                  | 4.5                                  |                      | 4.4                  |                      |       |                                       |                           |
|                  |                           | 1.65                          | 1.29                 | 1.52                                 |                      | 1.29                 |                      | V     | $V_{IN} = V_{IH}$                     | $I_{OH} = -4 \text{ mA}$  |
|                  |                           | 2.3                           | 1.9                  | 2.15                                 |                      | 1.9                  |                      |       |                                       | $I_{OH} = -8 \text{ mA}$  |
|                  |                           | 3.0                           | 2.4                  | 2.8                                  |                      | 2.4                  |                      |       |                                       | $I_{OH} = -16 \text{ mA}$ |
|                  |                           | 3.0                           | 2.3                  | 2.68                                 |                      | 2.3                  |                      |       |                                       | I <sub>OH</sub> = -24 mA  |
|                  |                           | 4.5                           | 3.8                  | 4.2                                  |                      | 3.8                  |                      |       |                                       | I <sub>OH</sub> = -32 mA  |
| V <sub>OL</sub>  | LOW Level Control         | 1.65                          |                      |                                      | 0.1                  |                      | 0.1                  |       |                                       |                           |
|                  | Output Voltage            | 2.3                           |                      |                                      | 0.1                  |                      | 0.1                  |       |                                       | L = 100 v A               |
|                  |                           | 3.0                           |                      |                                      | 0.1                  |                      | 0.1                  |       |                                       | $I_{OL} = 100 \ \mu A$    |
|                  |                           | 4.5                           |                      |                                      | 0.1                  |                      | 0.1                  |       |                                       |                           |
|                  |                           | 1.65                          |                      | 0.08                                 | 0.24                 |                      | 0.24                 | V     | $V_{IN} = V_{IH}$                     | $I_{OL} = 4 \text{ mA}$   |
|                  |                           | 2.3                           |                      | 0.10                                 | 0.3                  |                      | 0.3                  |       |                                       | $I_{OL} = 8 \text{ mA}$   |
|                  |                           | 3.0                           |                      | 0.15                                 | 0.4                  |                      | 0.4                  |       |                                       | $I_{OL} = 16 \text{ mA}$  |
|                  |                           | 3.0                           |                      | 0.22                                 | 0.55                 |                      | 0.55                 |       |                                       | $I_{OL} = 24 \text{ mA}$  |
|                  |                           | 4.5                           |                      | 0.22                                 | 0.55                 |                      | 0.55                 |       |                                       | $I_{OL} = 32 \text{ mA}$  |
| I <sub>IN</sub>  | Input Leakage Current     | 0 to 5.5                      |                      |                                      | ±0.1                 |                      | ±1.0                 | μA    | $0 \le V_{IN} \le 5.5$                |                           |
| I <sub>OFF</sub> | Power Off Leakage Current | 0.0                           |                      |                                      | 1.0                  |                      | 10                   | μΑ    | V <sub>IN</sub> or V <sub>OUT</sub> = | 5.5V                      |
| I <sub>CC</sub>  | Quiescent Supply Current  | 1.65 to 5.5                   |                      |                                      | 1.0                  |                      | 10.0                 | μA    | V <sub>IN</sub> = 5.5V, G             | ND                        |

| 4 |
|---|
| N |
| N |
| S |
| ~ |
| C |
| Ž |

#### AC Electrical Characteristics

|                  | _                                                                          | V <sub>cc</sub>                 |       | $T_{A} = +25^{\circ}C$ | 2    | $T_A = \cdot$ | -40°C to | +85°C |                 |                                   | Figure          |
|------------------|----------------------------------------------------------------------------|---------------------------------|-------|------------------------|------|---------------|----------|-------|-----------------|-----------------------------------|-----------------|
| Symbol           | Parameter                                                                  | (V)                             | Min   | Тур                    | Max  | M             | in I     | Max   | Units           |                                   | Numbe           |
| f <sub>MAX</sub> | Maximum Clock                                                              | 1.8 ± 0.15                      | 75    |                        |      | 7             | 5        |       |                 |                                   |                 |
|                  | Frequency                                                                  | $2.5\pm0.2$                     | 150   |                        |      | 15            | 60       |       |                 | C <sub>L</sub> = 15 pF            |                 |
|                  |                                                                            | $3.3 \pm 0.3$                   | 200   |                        |      | 20            | 0        |       |                 | $R_{\rm D} = 1 \ \rm M\Omega$     | Figures         |
|                  |                                                                            | $5.0\pm0.5$                     | 250   |                        |      | 25            | 60       |       | MHz             | S <sub>1</sub> = Open             | 1, 5            |
|                  |                                                                            | $3.3\pm0.3$                     | 175   |                        |      | 17            | '5       |       |                 | $C_{1} = 50 \text{ pF}$           | 1               |
|                  |                                                                            | $5.0 \pm 0.5$                   | 200   |                        |      | 20            | 0        |       |                 | $R_D = 500\Omega$ , $S_1 = Open$  |                 |
| t <sub>PLH</sub> | Propagation Dela                                                           | y 1.8 ± 0.15                    | 2.5   | 6.5                    | 12.5 | 2.            | 5 ,      | 13.0  |                 | 5                                 |                 |
| t <sub>PHL</sub> | CK to Q, Q                                                                 | $2.5 \pm 0.2$                   | 1.5   | 3.8                    | 7.5  | 1.            | 5        | 8.0   |                 | C <sub>L</sub> = 15 pF            |                 |
|                  |                                                                            | $3.3\pm0.3$                     | 1.0   | 2.8                    | 6.5  | 1.            | 0        | 7.0   | ns              | $R_{D} = 1 M\Omega$               | Figures         |
|                  |                                                                            | $5.0\pm0.5$                     | 0.8   | 2.2                    | 4.5  | 0.            | 8        | 5.0   |                 | S <sub>1</sub> = Open             | 1, 3            |
|                  |                                                                            | $3.3 \pm 0.3$                   | 1.0   | 3.4                    | 7.0  | 1.            | 0        | 7.5   |                 | $C_{1} = 50 \text{ pF}$           |                 |
|                  |                                                                            | $5.0\pm0.5$                     | 1.0   | 2.6                    | 5.0  | 1.            | 0        | 5.5   |                 | $R_D = 500 \Omega$ , $S_1 = Open$ |                 |
| t <sub>PLH</sub> | Propagation Dela                                                           |                                 | 2.5   | 6.5                    | 14.0 | 2.            | 5        | 14.5  |                 | 5 1 1                             |                 |
| t <sub>PHL</sub> | $\overline{\text{CLR}}, \overline{\text{PR}}, \text{ to } Q, \overline{Q}$ | -                               | 1.5   | 3.8                    | 9.0  | 1.            |          | 9.5   |                 | C <sub>L</sub> = 15 pF            |                 |
| THE              | - , ,                                                                      | 3.3 ± 0.3                       | 1.0   | 2.8                    | 6.5  | 1.            |          | 7.0   |                 | $R_D = 1 M\Omega$                 | Figures         |
|                  |                                                                            | 5.0±0.5                         | 0.8   | 2.2                    | 5.0  | 0.            |          | 5.5   | ns              | S <sub>1</sub> = Open             | 1, 3            |
|                  |                                                                            | $3.3 \pm 0.3$                   | 1.0   | 3.4                    | 7.0  | 1.            |          | 7.5   |                 | $C_{1} = 50 \text{ pF}$           | -               |
|                  |                                                                            | 5.0 ± 0.5                       | 1.0   | 2.6                    | 5.0  | 1.            | 0        | 5.5   |                 | $R_D = 500 \Omega$ , $S_1 = Open$ |                 |
| ts               | Setup Time,                                                                | 1.8 ± 0.15                      | 6.5   |                        |      | 6.            |          |       |                 |                                   |                 |
| -5               | CK to D                                                                    | 2.5±0.2                         | 3.5   |                        |      | 3.            |          |       |                 | C <sub>L</sub> = 15 pF            |                 |
|                  | 01110 0                                                                    | $3.3 \pm 0.3$                   | 2.0   |                        |      | 2.            |          |       |                 | $R_{\rm D} = 1  M\Omega$          | Figuros         |
|                  |                                                                            | 5.0 ± 0.5                       | 1.5   |                        |      | 1.            |          |       | ns              | S <sub>1</sub> = Open             | Figures<br>1, 4 |
|                  |                                                                            | 3.3 ± 0.3                       | 2.0   |                        |      | 2.            |          |       |                 | $C_1 = 50 \text{ pF}$             |                 |
|                  |                                                                            | $5.0 \pm 0.5$                   | 1.5   |                        |      | 1.            |          |       |                 | $R_D = 500 \Omega$ , $S_1 = Open$ |                 |
| t <sub>H</sub>   | Hold Time,                                                                 | 1.8 ± 0.15                      | 0.5   |                        |      | 0.            |          |       |                 | ng = 000 12, 01 = 0pon            |                 |
| чн               | CK to D                                                                    | 2.5 ± 0.2                       | 0.5   |                        |      | 0.            | -        |       |                 | C <sub>L</sub> = 15 pF            |                 |
|                  | OIT IO D                                                                   | 3.3 ± 0.3                       | 0.5   |                        |      | 0.            |          |       |                 | $R_{\rm D} = 1  M\Omega$          | Figures         |
|                  |                                                                            | $5.0 \pm 0.5$                   | 0.5   |                        |      | 0.            |          |       | ns              | $S_1 = Open$                      | Figures<br>1, 4 |
|                  |                                                                            | 3.3 ± 0.3                       | 0.5   |                        |      | 0.            | -        |       |                 | $C_1 = 50 \text{ pF}$             |                 |
|                  |                                                                            | 5.0 ± 0.5                       | 0.5   |                        |      | 0.            | -        |       |                 | $R_D = 500 \Omega$ , $S_1 = Open$ |                 |
| t <sub>W</sub>   | Pulse Width,                                                               | 1.8 ± 0.15                      | 6.0   |                        |      | 6.            |          |       |                 | ND = 500 32, 01 = 0pen            |                 |
| w                | CK, PR, CLR                                                                | 2.5 ± 0.2                       | 4.0   |                        |      | 4.            |          |       |                 | C <sub>L</sub> = 15 pF            |                 |
|                  | OR, FR, OLK                                                                | $2.3 \pm 0.2$<br>$3.3 \pm 0.3$  | 3.0   |                        |      | 4.            | -        |       |                 | $R_{\rm D} = 1  M\Omega$          |                 |
|                  |                                                                            | $5.0 \pm 0.5$                   | 2.0   |                        |      | 2.            | -        |       | ns              | $S_1 = Open$                      | Figures<br>1, 5 |
|                  |                                                                            | $3.3 \pm 0.3$                   | 3.0   |                        |      | 3.            |          |       |                 | CL = 50 pF                        | ., 0            |
|                  |                                                                            |                                 | 2.0   |                        |      | 2.            |          |       |                 |                                   |                 |
| t                | Recover Time                                                               | $5.0 \pm 0.5$<br>$1.8 \pm 0.15$ | 2.0   |                        |      | 2.            | -        |       |                 | $R_D = 500 \Omega$ , $S_1 = Open$ |                 |
| t <sub>REC</sub> | CLR, PR to CK                                                              |                                 |       |                        |      | -             | -        |       |                 | C = 15 pE                         |                 |
|                  | ULK, PK to CK                                                              | $2.5 \pm 0.2$                   | 4.5   |                        |      | 4.            |          |       |                 | C <sub>L</sub> = 15 pF            |                 |
|                  |                                                                            | $3.3 \pm 0.3$                   | 3.0   |                        |      | 3.            | -        |       | ns              | $R_D = 1 M\Omega$                 | Figures<br>1, 4 |
|                  |                                                                            | 5.0 ± 0.5                       | 3.0   |                        |      | 3.            | -        |       |                 | S <sub>1</sub> = Open             | ·, <del>·</del> |
|                  |                                                                            | 3.3 ± 0.3                       | 3.0   |                        |      | 3.            | -        |       |                 | C <sub>L</sub> = 50 pF            |                 |
|                  |                                                                            | $5.0\pm0.5$                     | 3.0   |                        |      | 3.            | U        |       |                 | $R_D = 500 \Omega$ , $S_1 = Open$ |                 |
| Capa             | acitance (N                                                                | lote 3)                         |       |                        |      |               |          |       |                 |                                   |                 |
| Sym              | bol                                                                        | Paran                           | neter |                        |      | Тур           | Max      | Units | 5               | Conditions                        |                 |
| C <sub>IN</sub>  | Input Ca                                                                   | pacitance                       |       |                        |      | 3             |          | pF    | V <sub>CC</sub> | ; = 0V                            |                 |
|                  |                                                                            |                                 |       |                        |      |               |          | 1     | 1.              |                                   |                 |

| Note 3: $T_A = +25C$ , | f = 1MHz. |
|------------------------|-----------|

Output Capacitance

Power Dissipation Capacitance (Note 4)

Note 4:  $C_{PD}$  is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption ( $I_{CCD}$ ) at no output loading and operating at 50% duty cycle. (See Figure 2)  $C_{PD}$  is related to  $I_{CCD}$  dynamic operating current by the expression:  $I_{CCD} = (C_{PD}) (V_{CC}) (f_{|N}) + (I_{CC} static).$ 

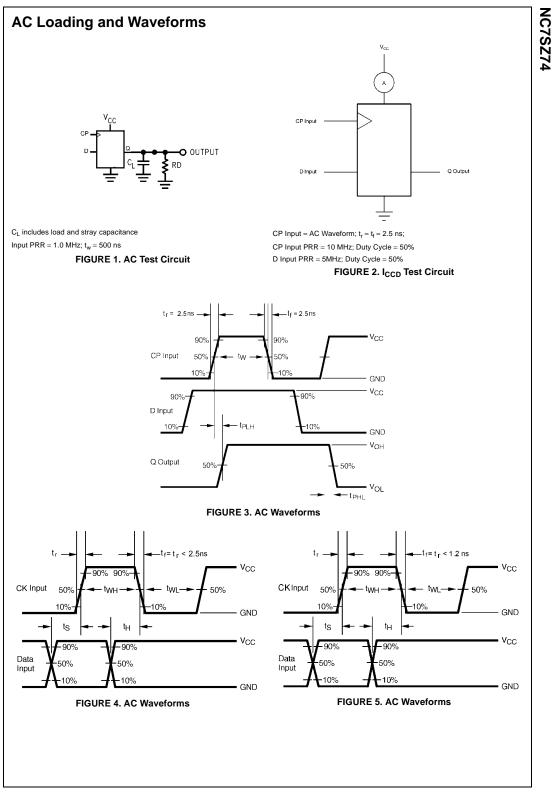
4

10

12

 $V_{CC} = 0V$ 

V<sub>CC</sub> = 3.3V

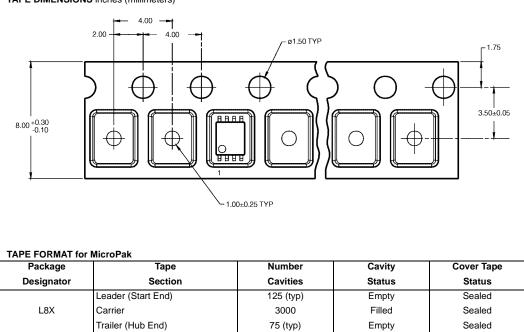

 $V_{CC} = 5.0V$ 

рF

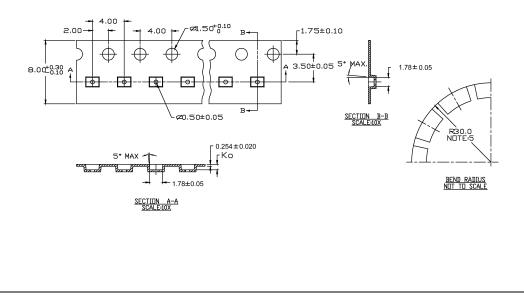
pF

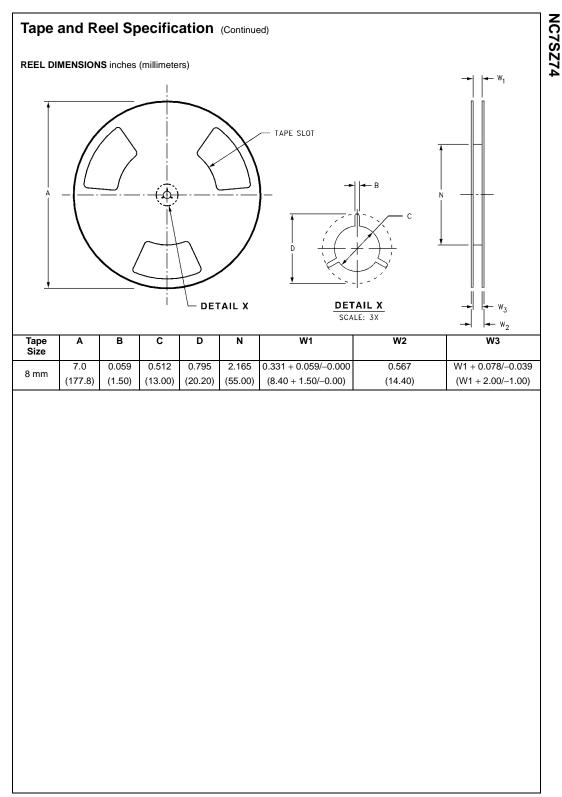
C<sub>OUT</sub>

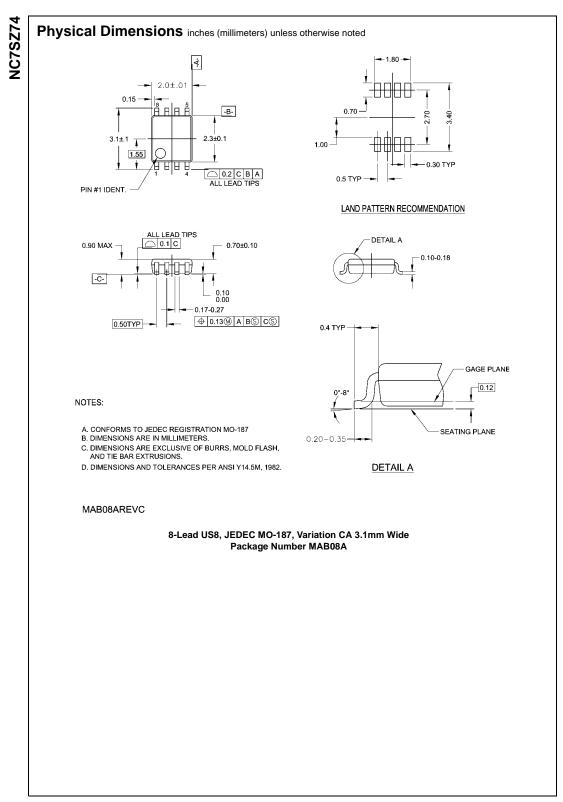
 $\mathsf{C}_{\mathsf{PD}}$ 

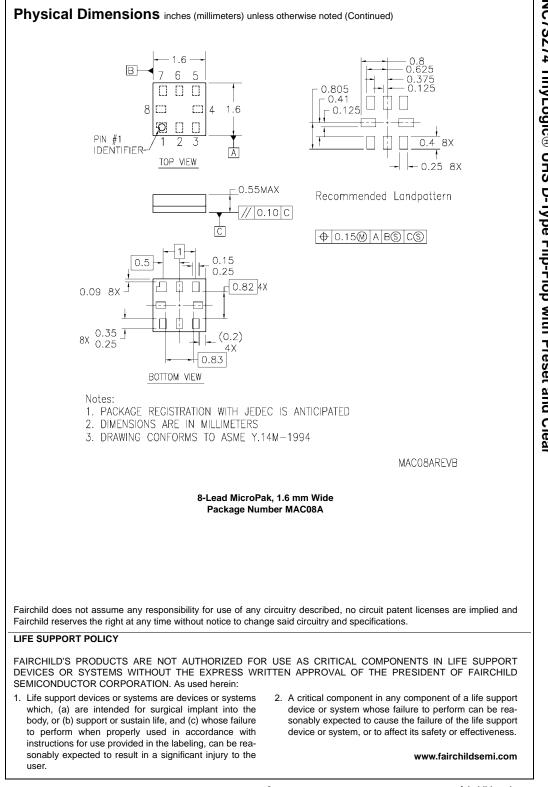






# Tape and Reel Specification


| TAPE FORMAT fo | r US8              |           |        |            |
|----------------|--------------------|-----------|--------|------------|
| Package        | Таре               | Number    | Cavity | Cover Tape |
| Designator     | Section            | Cavities  | Status | Status     |
|                | Leader (Start End) | 125 (typ) | Empty  | Sealed     |
| K8X            | Carrier            | 3000      | Filled | Sealed     |
|                | Trailer (Hub End)  | 75 (typ)  | Empty  | Sealed     |


TAPE DIMENSIONS inches (millimeters)




TAPE DIMENSIONS inches (millimeters)









9